Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. This is the first paper in a series aiming to determine the fractions and birth rates of various types of supernovae (SNe) in the local Universe. Aims. In this paper, we aim to construct a complete sample of SNe in the nearby Universe and provide more precise measurements of subtype fractions. Methods. We carefully selected our SN sample at a distance of less than 40 Mpc mainly from wide-field surveys conducted over the years from 2016 to 2023. Results. The sample contains a total of 211 SNe, including 109 SNe II, 69 SNe Ia, and 33 SNe Ibc. With the aid of sufficient spectra, we obtained relatively accurate subtype classifications for all SNe in this sample. After corrections for the Malmquist bias, this volumelimited sample yielded fractions of SNe Ia, SNe Ibc, and SNe II of 30.4−11.5+3.7%, 16.3−7.4+3.7%, and 53.3−18.7+9.5%, respectively. In the SN Ia sample, the fraction of the 91T-like subtype becomes relatively low (~5.4%), while that of the 02cx-like subtype shows a moderate increase (~6.8%). In the SN Ibc sample, we find significant fractions of broadlined SNe Ic (~18.0%) and SNe Ibn (~8.8%). The fraction of the 87A-like subtype was determined to be ~2.3%, indicating rare explosions from blue supergiant stars. We find that SNe Ia show a double peak number distribution in S0- and Sc-type host galaxies, which may serve as straightforward evidence for the presence of “prompt” and “delayed” progenitor components that give rise to SN Ia explosions. Several subtypes of SNe such as 02cx-like SNe Ia, broadlined SNe Ic, and SNe IIn (and perhaps SNe Ibn) are found to occur preferentially in less massive spiral galaxies (i.e., with stellar mass <0.5×1010Mʘ), thus favoring their associations with young stellar progenitors. Moreover, the 02cx-like subtype shows a trend of exploding in the outer skirt of their hosts, which is suggestive of metal-poor progenitors.more » « lessFree, publicly-accessible full text available June 1, 2026
-
In this paper, we present an extensive analysis of SN 2021 wuf, a transition between Ia-norm and SN 1991T-like supernovae, which exploded at the periphery of the tidal bridge between the pair galaxy NGC 6500 and NGC 6501, at a redshift ofz = 0.01. Our observations, ranging from −21 to +276 days relative to theB-band maximum light, reveal that SN 2021wuf exhibits properties akin to normal SNe Ia, with a peak absolute magnitude ofMmax(B) ∼ − 19.49 ± 0.10 mag and a post-peak decline rate of Δm15(B) ∼ 1.11 ± 0.06 mag. The peak bolometric luminosity of this SN is estimated as 1.58 × 1043erg s−1, corresponding to a56Ni mass ofMNi ∼ 0.64 ± 0.05 M⊙. The spectral features, including high-velocity Si IIλ6355 lines, a plateau in the Si IIλ6355 velocity evolution and the nickel-to-iron ratio in the nebular phase, suggest a potential pulsating delayed detonation mechanism. The absence of intermediate-mass elements in the early phase and the high photospheric temperature, as inferred from the line-strength ratio of Si IIλ5972 to Si IIλ6355 (named asR(Si II)), further support this classification.more » « less
-
Abstract We present the astrometric calibration of the Beijing–Arizona Sky Survey (BASS). The BASS astrometry was tied to the International Celestial Reference Frame via the Gaia Data Release 2 reference catalog. For effects that were stable throughout the BASS observations, including differential chromatic refraction and the low charge transfer efficiency of the CCD, we corrected for these effects at the raw image coordinates. Fourth-order polynomial intermediate longitudinal and latitudinal corrections were used to remove optical distortions. The comparison with the Gaia catalog shows that the systematic errors, depending on color or magnitude, are less than 2 milliarcseconds (mas). The position systematic error is estimated to be about −0.01 ± 0.7 mas in the region between 30° and 60° of decl. and up to −0.07 ± 0.9 mas in the region north of decl. 60°.more » « less
-
In this study, we analyzed the optical observations of a subluminous Type Ia supernova (SN Ia) 2017fzw, which exhibited high photospheric velocity (HV) at B-band maximum light. The absolute B-band peak magnitude was determined to be MmaxB=−18.65±0.13 mag, similar to 91bg-like SNe Ia. An estimation of the rate of decline for the B-band light curve was determined to be Δm15(B)=1.60±0.06 mag. The spectra of SN 2017fzw were similar to those of 91bg-like SNe Ia, with prominent Ti ii and Si ii λ5972 features at early phases, gradually transitioning to spectra resembling normal (mainly HV subclass) SNe Ia at later phases, with a stronger Ca ii NIR feature. Notably, throughout all phases of observation, SN 2017fzw displayed spectral evolution characteristics that were comparable to those of HV SNe Ia, and at peak brightness, the Si ii λ6355 velocity was determined to be 13,800 ± 415 km s−1 and a more pronounced Ca ii NIR feature was also detected. Based on these findings, we classify SN 2017fzw as a transitional object with properties of both normal and 91bg-like SNe Ia, providing support for the hypothesis of a continuous distribution of supernovae between these two groups.more » « less
-
We present a comparative study of two nearby type Ia supernovae (SNe Ia), 2018xx and 2019gbx, that exploded in NGC 4767 and MCG-02-33-017 at a distance of 48 Mpc and 60 Mpc, respectively. The B -band light curve decline rate for SN 2018xx is estimated to be 1.48 ± 0.07 mag and for SN 2019gbx it is 1.37 ± 0.07 mag. Despite the similarities in photometric evolution, quasi-bolometric luminosity, and spectroscopy between these two SNe Ia, SN 2018xx has been found to be fainter by about ∼0.38 mag in the B -band and has a lower 56 Ni yield. Their host galaxies have similar metallicities at the SN location, indicating that the differences between these two SNe Ia may be associated with the higher progenitor metallicity of SN 2018xx. Further inspection of the near-maximum-light spectra has revealed that SN 2018xx has relatively strong absorption features near 4300 Å relative to SN 2019gbx. The application of the code TARDIS fitting to the above features indicates that the absorption features near 4300 Å appear to be related to not only Fe II /Mg II abundance but possibly to the other element abundances as well. Moreover, SN 2018xx shows a weaker carbon absorption at earlier times, which is also consistent with higher ejecta metallicity.more » « less
An official website of the United States government
